3.3V ECL +4 Divider

The MC100LVEL33 is an integrated ÷4 divider. The LVEL is functionally equivalent to the EL33 and works from a 3.3 V supply.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronization of multiple LVEL33's in a system.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- 630 ps Typical Propagation Delay
- 4.0 GHz Typical Maximum Frequency
- ESD Protection: >4 KV HBM, >200 V MM
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC}= 3.0 V to 3.8 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -3.0 V to -3.8 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 130 devices

ON Semiconductor™

http://onsemi.com

MARKING DIAGRAMS*

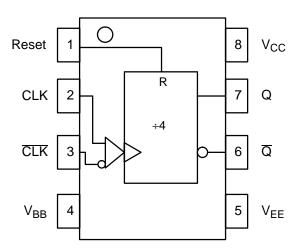
SO-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

A = Assembly Location

L = Wafer Lot

Y = Year


W = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100LVEL33D	SO-8	98 Units / Rail
MC100LVEL33DR2	SO-8	2500 / Reel
MC100LVEL33DT	TSSOP-8	98 Units / Rail
MC100LVEL33DTR2	TSSOP-8	2500 / Reel

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

PIN DESCRIPTION

PIN	FUNCTION
CLK, CLK	ECL Differential Clock Inputs
Q, Q	ECL Differential Data ÷4 Outputs
Reset	ECL Asynch Reset
V _{BB} V _{CC}	Reference Voltage Output Positive Supply
VCC V _{EE}	'''
VEE	Negative Supply

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		–8 to 0	V
VI	PECL Mode Input Voltage	V _{EE} = 0 V	$V_{I} \leq V_{CC}$	6 to 0	V
	NECL Mode Input Voltage	$V_{CC} = 0 V$	$V_{I} \ge V_{EE}$	-6 to 0	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to 44 ± 5%	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

 $^{{\}it 1. \ } {\it Maximum \ Ratings \ are \ those \ values \ beyond \ which \ device \ damage \ may \ occur.}$

LVPECL DC CHARACTERISTICS V_{CC}= 3.3 V; V_{EE}= 0.0 V (Note 1)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		33	37		33	37		35	39	mA
V _{OH}	Output HIGH Voltage (Note 2.)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 2.)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single Ended)	2135		2420	2135		2420	2135		2420	mV
V_{IL}	Input LOW Voltage (Single Ended)	1490		1825	1490		1825	1490		1825	mV
V _{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.) Vpp < 500 mV Vpp ≧ 500 mV	1.2 1.4		2.9 2.9	1.1 1.3		2.9 2.9	1.1 1.3		2.9 2.9	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Other CLK	0.5 -600			0.5 -600			0.5 -600			μΑ μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 1. Input and output parameters vary 1:1 with V_{CC}. \dot{V}_{EE} can vary ± 0.3 V.
- 2. Outputs are terminated through a 50 ohm resistor to $\ensuremath{\text{V}_{\text{CC}}}\xspace\text{--}2$ volts.
- 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

LVNECL DC CHARACTERISTICS V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 1.)

			-40°C 25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		33	37		33	37		35	39	mA
V _{OH}	Output HIGH Voltage (Note 2.)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2.)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 3.) Vpp < 500 mV Vpp ≧ 500 mV	-2.1 -1.9		-0.4 -0.4	-2.2 -2.0		-0.4 -0.4	-2.2 -2.0		-0.4 -0.4	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current Other CLK	0.5 -600			0.5 -600			0.5 -600			μΑ μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V.
- 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.
- 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

AC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0.0 V or V_{CC} = 0.0 V; V_{EE} = -3.3 V (Note 1.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency	3.4			3.8	4.0		3.8			GHz
t _{PLH} t _{PHL}	Propagation Delay CLK to Q (Diff) CLK to Q (SE) Reset to Q	510 460 500		690 740 700	540 490 520	630	720 770 720	600 550 580		780 830 780	ps
t _{RR}	Reset Recovery	300			300			300			ps
t _{skew}	Duty Cycle Skew (Note 2.)			20			20			20	ps
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Swing (Note 3.)	150		1000	150		1000	150		1000	mV
t _r	Output Rise/Fall Times Q (20% – 80%)	120		320	120		320	120		320	ps

- V_{EE} can vary ±0.3 V.
 Duty cycle skew is the difference between T_{PLH} and T_{PHL}.
 V_{PP} (min) is minimum input swing for which AC parameters are guaranteed.

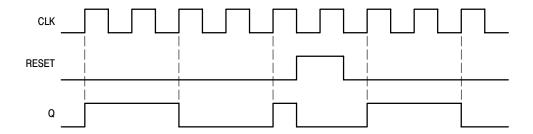


Figure 1. Timing Diagram

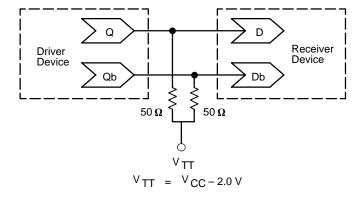


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

AN1560 – Low Voltage ECLinPS SPICE Modeling Kit

AN1568 – Interfacing Between LVDS and ECL

AN1596 – ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire–OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 – Odd Number Counters Design

AND8002 – Marking and Date Codes

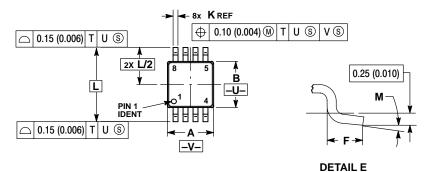
AND8020 – Termination of ECL Logic Devices

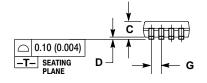
PACKAGE DIMENSIONS

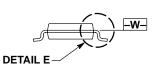
SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07

NOTES:

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	LLIMETERS INCHES		
DIM	MIN	MIN MAX		MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
5	5.80	6 20	0.228	0 244


PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX**

PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A

NOTES:

- 11ES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED
- FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193		
M	0°	6 °	0°	6°	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.